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JIŘÍ RACLAVSKÝ 

SOME ARGUMENTS FOR THE USE OF THE NOTION  
OF CONSTRUCTION 

The main aim of logic is, as Frege has already declared, to guarantee entail-
ment. For this aim, the analysis of sentences making up an argument is neces-
sary. Thereby the logical analysis of natural language obeys the challenge of phi-
losophical logic which is to determine the class of correct arguments. 

Now consider the following case of an argument that contains propositional 
attitudes: 

premise 1: Mr. X knows that 2+3=5. 
premise 2: 2+3 = √ 25. (It is not necessary to put this premise here.) 
conclusion: Mr. X knows that √ 25 is 5. 

Another argument containing notional attitudes: 
premise: Mr. X calculates 2+3. 
conclusion: Mr. X calculates √ 25. 

Because of the analyticity of mathematics, any true mathematical sentence could 
be substituted for 2+3=5 in our first premise, truth-conditions will not change. In 
the case of the latter argument any expression denoting the same number can be 
substituted there. Now the consequent conclusion, however, is not correct: Mr. 
X has to know what he possibly does not know, or, in the second argument, he 
calculates what possibly he does not calculate. The problem concerned with our 
first example is called the paradox of omniscience and it is a special kind of the 
paradox of analysis. 

By the way, remember that Frege tried to solve the paradox of analysis via his 
category of Sinn (sense) – premise 1: Mr. X knows that /E/vening star = 
/E/vening star, premise 2: /M/orning star = /E/vening star, conclusion: Mr. X 
knows that /M/orning star = /E/vening star; Frege said that in similar contexts, 
the proper names like /M/orning star do not denote directly the individual Venus 
but denotes only its senses – nevertheless the problematic consequence of 
Frege’s claim is contextualism, the systematical ambiguity of nearly every word 
(and sentences as well). Note also that Frege did not avoid the paradox of om-
niscience: “It may happen, however, that the sense of the subsidiary clause is a 
complete thought, in which case it can be replaced by another of the same truth 
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value without harm to the truth of the whole – provided there are no grammatical 
obstacles.” (Frege 1993, p. 39). 

As is easy to see, the expression √25 does not have the same meaning as the 
expression 2+3 (a similar difference is also seen between expressions ‘equilater-
al triangle’ and ‘equiangular triangle’). That is why we cannot substitute mathe-
matical expressions for each other in the above arguments. This problem, how-
ever, concerns not only mathematical expressions. For example any proposition 
can be constructed in infinitely many ways (imagine, for example, adding couple 
of negations). We have to take into account the structure hidden behind the ex-
pression.1 The requirement of some structured entity is not entirely unknown: 
the intensional isomorphism of Rudolph Carnap (1958) or structured meanings 
introduced by Max Cresswell (1985) are examples thereof. In the contemporary 
logical semantics speaks about “hyperintensional contexts”, in the respective 
relations are called in transparent intensional logic “constructional attitudes”. 

 
Now we will argue against two (inadequate) solutions to this problem. 
a) Some people might think that calculating or drawing conclusions in such 

arguments like those above relates individuals with values (outcomes) of the 
given procedures. Namely when Mr. X is calculating 2+3 he is related to the 
number 5. We object that we often calculate something (perhaps complicated) 
without knowing what the results will be. Some mathematical problems can be 
calculated although nearly nobody is related to the respective outcome. Remem-
ber also that in a school we are not taught to know values, we are taught to cal-
culate some mathematical task. We are taught to apply, for example, the addition 
function to the two numbers and then generate, or calculate, the outcome. So 
calculating is different from being related to, or strictly speaking aiming at, some 
outcome. Hence when Mr. X calculates 2+3, he is not related to the value. 

To enlighten our topic from the other side we must also claim another natural 
fact. Mathematicians state equalities like 2+3=√25. This is their job, not to claim 
identities like 5=5. Both expressions, 2+3 and √25 denote the same object, num-
ber 5, but the ways, intellectual journeys, procedures, or computation processes 
are different; the number five is constructed by two distinct constructions. 

                                                      
1 For brilliant argumentation against semantical analysis that favours denoted objects as a base 

for substitutions let us cite Tichý (1988, pp. 234–5) (set aside here the Russellian “structured 
propositions”): “The proposition that 1+1=2 is the very same as the proposition that 2=1+1: it 
is the (unique) proposition which is true in all worlds at all times. When we say ‘1+1=2; 
therefore, 2=1+1,’ we are hardly relating this unstructured proposition to itself. Rather, we are 
relating two compound entities in which the same items are knitted together in two different 
ways. ... We have already noted that the proposition that 1+1=2 is the very same as the one 
which states the Pythagorean Theorem. Hence the former entails the latter. Yet one cannot in-
fer the letter from the former: surely no one would argue that the square over the hypotenuse 
is the sum of the squares over the other two sides because one plus one makes two. For one 
mathematical truth to be inferable from another, the two must exhibit a certain structural af-
finity, an affinity which subsists between 1+1=2 and 2=1+1, but fails to subsist between 
1+1=2 and the Pythagorean Theorem. Mathematical truths thus cannot be unstructured propo-
sitions. ... Inference is thus best seen as an operation on propositional constructions rather 
than on propositions.” 
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Briefly, the calculating does not concern the outcome of a procedure: it con-
cerns the procedure itself. The calculating links an individual with constructions. 
From another point of view, for analysis of mathematical expressions, we have 
to postulate the category of some (structured) procedures. 

b) According to another very popular opinion, calculating relates individuals 
with expressions. But immediately we have to object that it is entirely absurd to 
claim that by the statement “Mr. X calculates 2+3” is meant the same that can be 
– when using quotation marks for signing out the expression as such – written in 
this way: “ Mr. X calculates (this verb is entirely meaningless in this context) 
‘2+3’”. (Let us add that in the sentence “Mr. X writes 2+3” we cannot substitute 
for the (sub)expression 2+3.) We must strictly separate an expression and what 
the expression stands for. A linguistic expression is always about an object dis-
tinct from this expression (of course, ‘word’ stands for word, ‘‘word’’ stands for 
‘word’).2 

It is also easy to see that calculating is independent of specific notation. It 
transcends the particular expressions. It is irrelevant whether Mr. X calculates 
2+3, or two plus three, or, evoking Carnap, plus (II, III). If it is said that Mr. X 
calculates two plus three, we know nothing (and also do not care) about his ac-
quaintance with standard or alternative arithmetical notation. The logician using 
Polish notation and the logician using the Russellian one are doing the same 
propositional calculus although their notations differ. 

Hence calculating concerns what the expressions mean rather than the ex-
pressions themselves. When calculating, we are performing an arithmetical not 
a linguistic operation.3 Analogously, in the propositional attitudes we are not 
related to the sentence-expression but to the meaning of this sentence (however 
not directly to the proposition, only to the construction of this proposition). 

 
Now when the desirable structures are neither outcomes (results of some proce-

dures), nor expressions as well, there is a question of what they are. What kind of 
entities are they? We know that it should be something what will distinguish the 
parts of the whole. Something that will contradistinguish 2, 3, + from 25, √ in the 
wholes like 2+3 and √25. But this is not, as we will see later, enough. Also we 
need something that will disclose such differences as those between 1+2 and 2+1 

                                                      
2 At this occasion we have to add an remark concerning constructions. In the sentence “[λx [0> 

x 00] ] constructs the class of positive numbers” we are talking about some relation between 
the construction and the predicate “construct the class of...”, not about the expression of con-
struction itself. About the expression ‘[λx [0> x 00] ]’ we can correctly predicate only some-
thing like “contains two pairs of brackets”. Constructions are not expressions, the expressions 
stand for constructions. 

3 In connection with this note what combines objects (like 2, 3, +) cannot be an expression. A 
function adheres to its argument another way. Again cite Tichý here (1988, pp. 36–37): “If the 
term ‘(2 × 2) – 3’ is not diagrammatic of anything, in other words, if the numbers and functions 
mentioned in this term do not themselves combine into any whole, then the term is the only 
thing which holds them together. The numbers and functions hang from it like Christmas deco-
rations from a branch. The term, the linguistic expression, thus becomes more than a way of re-
ferring to independently specifiable subject matter: it becomes constitutive of it.”. 
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where + is applied to the couple <1, 2> in the former case and to the couple <2, 1> 
in the latter (there might be people who have trouble with the fact that 2+1 derives 
the same number as 1+2). There are three possibilities on how to construe this 
structure. We will briefly argue against the first two views in favour of the third. 

a) The simplest view is the opinion that such a structure can be rendered by sets. 
But Bernard Bolzano already noted, in his field of interest, that two concepts, for 
example “the learned son of the non-learned father” and “non-learned son of the 
learned father”, can have the same the content, viz. the set {non, son, father, 
learned}, but that is not enough for the characteristics of concepts. The set is noth-
ing other than the list of parts. The structure, i.e., the way the parts are combined 
together, is not visible from it. Computing 2+3 is not making the list of 2, +, 3 (or 
2, 3, +, or +, 2, 3 etc.). Sets (collections, sums) cannot in principle serve as the 
instrument for fixing the structure which combines parts into the whole. 

b) Another suggestion came from Cresswell who realized the necessity of 
analyzing mathematical expressions (and all hyperintensional contexts as well). 
He represented them as n-tuples of mathematical objects. So the structure 2+3 is 
construed as the triple < +, 2, 3 >. But also in this case we have the mere list, 
enumeration, of parts, although ordered. The n-tuple does not combine the enu-
merated objects into any whole. A convention is needed which interprets the 
triple as a proxy for the construction of the applying the first component (viz. the 
addition mapping) to the other two as arguments.4 The triple is thus at best 
something what represents the structure that somebody is related to. (Another 
problem arose in cases like “Mr. X computes [λx[x+3]](2) = 5”. In Cresswell’s 
theory, attitudes are between someone and mathematical object, but in Cress-
well’s hierarchy of objects there is nothing like a variable in an objectual sense. 
Thus there is no way to represent the meaning of clauses like this.) Therefore 
also n-tuples are not plausible tools for fixing the required structure.5 

c) As an argument for the choice of apparatus, let us consider following intui-
tion (adapting an example with which Tichý started his main book, Tichý 1988). 
Surely there are many ways to Rome. Someone who decided to visit Rome can 
get there by plane from some city, someone can go there by bus through some 
cities, somebody through some other cities. The ways and the places somebody 
goes through differ from each other. The journeys to Rome (this is the destina-
tion) have different itineraries. One’s destination and the itinerary one follows to 
get there are clearly two distinct items. Whereas Rome is simply some place, an 
itinerary is a compound in which a number of locations occur. This intuition has 

                                                      
4 Carnap tried to define his intensional isomorfism also without references to the some notion 

of construction of the whole. Expressions ‘8–3’ and ‘minus(VIII, III)’ are, according to his 
definition, intensionally isomorph. It can be argued that his definition presupposes only “re-
gimented” languages where is a perfect isomorfism between a calculation and the formula 
which represents it and left-right convention is used (ordinary English is excluded, consider, for 
example, an expression like ‘subtracting 3 from 8’). But what is worse, left-to-right convention 
of writing arguments must be explicitly stated. The convention concerns the method of recording 
the application of a binary function to two arguments and this is a symbolising a certain calcula-
tion (construction). (See the first pages of Tichý 1986 and Tichý 1988, pp. 8–9.) 

5 For a more precise argumentation see Tichý (1994b, pp. 78–80) or Cmorej & Tichý (1988). 
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a clear correlation in the field of mathematics. An arithmetical calculation dem-
onstrated by the expression is much like the itinerary, an intellectual journey 
whose destination is some number. The number 5 we can get through adding 3 
to 2 or the square root of 25 (and so on). None of these intellectual journeys is a 
part of the number 5. Hence the equality 5=5 is not interesting; what is interest-
ing is the equality 2+3=√25 which says that two intellectual journeys, proce-
dures have the same destination. We have seen above that a (possibly ordered) 
list of items is not sufficient. The journey to Rome consists not only of some 
cities and the means of transport, but in their combining of the whole of journey. 
The numbers 2, 3, and the + must be clearly combined into a certain compound. 

We are looking for such an apparatus where the role of parts is clearly defined. 
We can find such a formal tool in Church’s-calculi, more precisely in typed lamb-
da calculi. Lambda-calculi construe functions not as a mappings, i.e., a simple 
correspondence between arguments and values, but as some calculating methods. 
The difference between mappings and functions as calculating methods is easily 
seen due to the fact that two mappings effecting one and the same correspondence 
are one and the same mapping (extensionality). Two calculating methods, howev-
er, may be distinct although they yield the same correspondence between argu-
ments and values: the values of one and the same mapping are obtainable from its 
arguments by more than one (strictly speaking infinitely many) calculating me-
thods. That is why the notion of calculating method, the calculating procedure is 
so interesting for us. There are (infinitely) many constructions of one proposition 
(analogously for other objects). We have seen in the example of hyperintensional 
contexts that the view that when calculating we are related to the values of proce-
dures is inadequate. The other point concerns the structure we need. Whereas the 
table (of a mapping) is unstructured, the calculating procedure is structured. Note 
that originally, in the beginning of seventeenth century, mathematicians consi-
dered functions as functional prescriptions (which are structured), not as bare cor-
respondences. A lambda calculus is an apparatus that recognises three kinds of 
those procedures: variables (which compute dependently on valuation), applica-
tion (which computes the value of a function on its argument), and abstraction 
(which produces the function itself). So 2+3 is an example of application of addi-
tion to two and three ([+ 2 3]), λx[+ [× 2 x] 3] is an example of abstraction that 
determines a function which associates any number with the outcome of multiply-
ing it by 2 and adding 3. The role of parts is given by rigorous definition, for ex-
ample in the case of application addition mapping is a binary function of couples 
of numbers and the numbers 2, 3 make up just such argument. 

Tichý adapted lambda-calculus; he modified it into his theory of constructions.6 
There are four main kinds of constructions. First, the variables which construct 
dependent on valuation (variables are construed in an objectual way). Then for 

                                                      
6 As an remark we add that constructions, as well as numbers and any other abstract entities are 

not spatio-temporally localizable (they are, e.g., not expressions), they are abstract. If you are 
asking where and when constructions are, you can liken them to numbers for which this ques-
tion does not have any reasonable sense. 
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the identification, the immediate, one-step ”grasp” of some object we have tri-
vialization, that construct X without any change (trivialization is an explication 
of “primitive sense”). Application is turned to composition which after the iden-
tification of entities (their constructing by trivialization) applies a function to 
arguments. Abstraction is turned into closure which is a certain construction of 
some function. Constructions fix particular steps of procedures, parts are not lost 
as in the table of mapping. Parts are clearly visible and their role in composing 
the whole is given by rigorous definition. 

Constructions are also an explication of Frege’s Sinn (“sense“, “mode of pres-
entation”). Frege’s example with medians of a triangle leads, in contrast to his 
morning star – evening star example, to our claim about the structuredness of 
sense. The expressions ‘equiangular triangle’ and ‘equilateral triangle’ depict 
two different constructions (because of different items) of one and the same (de-
noted) object. It can be easily seen also from such simple examples of expres-
sions like 2+3 and √25 that it is not important to know the denoted object, but 
rather the structured procedure. To understand some expression is to know 
which construction the expression represents. A sentence is about the constitu-
ents of the construction it expresses. To translate some expression into another 
language means to represent the same construction, the same intellectual journey 
from some given objects to another.7 

And what is more, we cannot avoid constructions in the conception of such 
fundamental notion as that of fact. The expressions “Alan is taller than Bill” and 
“Bill is shorter than Alan” denote one and the same fact. But the two sentences 
say it differently: the former is about applying taller-than relation (or function) 
to Alan and Bill, the latter about applying shorter-than relation to Bill and Alan. 
The proposition, fact, is only one, it does not contain parts like the taller-than 
relation or shorter-than relation. It is thus a sentence that is a picture of the con-
struction of some fact, state of affairs.8 

                                                      
7 For Tichý logic is not reducible to a set of formal tools. If it is an tool then for inquiring en-

tailment and for this purpose also for analysing expressions ingoing into the entailment: “Log-
ic is the study of logical objects (individuals, truth-values, possible worlds, propositions, 
classes, properties, relations, and the like) and the ways such objects can be constructed from 
other such objects. ... The point of investigating logical constructions of objects is two-fold. In 
the first place, the nature of such constructions often guarantees noteworthy properties or re-
lationships between objects generated by those constructions. ... In the second place, logical 
constructions can be assigned to linguistic expressions as their analyses (emphasis mine; 
Tichý 1978, p. 275). 

8 The very common ascribing of the structure of propositional constructions to propositions 
themselves does not end by this. Propositions are often called negative (existential, disjunc-
tive, etc.). But note that every proposition can be constructed by negating another proposition. 
This is, however, some interesting claim about the particular construction of the proposition, 
not about the proposition itself. See also Tichý 1986 (part 1), 1988 (pp. 14–15), or 1994a (an 
analysis of Wittgenstein’s “picture theory”), or 1995. 
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NĚKTERÉ DŮVODY PRO UŽITÍ POJMU KONSTRUKCE 

K prověření logického vyplývání a pro adekvátní logickou sémantiku přirozeného jazyka se 
jeví nezbytné přijmout nejen intenzionální, ale také hyperintenzionální entity. Jak ukazují analýzy 
propozičních postojů (a logika postojů vůbec), vhodným kandidátem pro takovýto druh entit jsou – 
spíše než Cresswellovy uspořádané n-tice – konstrukce, jak jsou definovány v transparentní inten-
zionální logice P. Tichého. 


