Generování žánrově specifické hudební transkripce Antonína Dvořáka prostřednictvím variačního autoenkodéru

Název: Generování žánrově specifické hudební transkripce Antonína Dvořáka prostřednictvím variačního autoenkodéru
Variantní název:
  • Generating genre-specific musical transcriptions of Antonín Dvořák through a variational autoencoder
Autor: Kvak, Daniel
Zdrojový dokument: Musicologica Brunensia. 2021, roč. 56, č. 2, s. 49-61
Rozsah
49-61
  • ISSN
    1212-0391 (print)
    2336-436X (online)
Type: Článek
Jazyk
 

Upozornění: Tyto citace jsou generovány automaticky. Nemusí být zcela správně podle citačních pravidel.

Abstrakt(y)
Apart from traditional deep learning tasks such as pattern recognition, stock price prediction, and machine translation, this method also finds practical application within algorithmic composition. This paper explores the use of a generative model based on unsupervised learning of a musical style from a pre-selected corpus and the subsequent prediction of samples from the estimated distribution. The model uses a Long Short-Term Memory neural network whose training data contains genre-specific melodies in symbolic representation.
Reference
[1] ALPERN, Adam. Techniques for Algorithmic Composition of Music [online]. Hampshire College, 1995. DOI:10.1.1.23.9364. | DOI 10.1.1.23.9364

[2] Building Autoencoders in Keras. In: The Keras Blog. Dostupné z: https://blog.keras.io/building-autoencoders-in-keras.html.

[3] CASEY, M. A. et al. Content-Based Music Information Retrieval: Current Directions and Future Challenges. Proceedings of the IEEE. 2008, roč. 96, č. 4, s. 668–696. ISSN 1558-2256. DOI:10.1109/JPROC.2008.916370. | DOI 10.1109/JPROC.2008.916370

[4] DAVIS, Martin. Engines of Logic: Mathematicians and the Origin of the Computer. USA: W. W. Norton & Co., Inc., 2001. ISBN 978-0-393-32229-3.

[5] DERTAT, Arden. Applied Deep Learning - Part 3: Autoencoders. In: Medium [online]. 8. 10. 2017. Dostupné z: https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798.

[6] ECK, Douglas a Juergen SCHMIDHUBER. A First Look at Music Composition using LSTM Recurrent Neural Networks [online]. 2002. Manno, Switzerland: Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale. DOI:10.5555/870511. | DOI 10.5555/870511

[7] FERNANDEZ, Jose David a Francisco VICO. AI Methods in Algorithmic Composition: A Comprehensive Survey. Journal of Artificial Intelligence Research. 2013, roč. 48, s. 513–582. ISSN 1076-9757. DOI: 10.1613/jair.3908. | DOI 10.1613/jair.3908

[8] FIEBRINK, Rebecca a Baptiste CARAMIAUX. The Machine Learning Algorithm as Creative Musical Tool. Handbook on Algorithmic Music [online]. Oxford: Oxford University Press, 2016. Dostupné z: https://www.researchgate.net/publication/309631691_The_Machine_Learning_Algorithm_as_Creative_Musical_Tool

[9] GULLI, Antonio a Sujit PAL. Deep Learning with Keras. Packt Publishing Ltd, 2017. ISBN 978-1-78712-903-0.

[10] HE, Kaiming et al. Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs] [online]. 2015. Dostupné z: http://arxiv.org/abs/1512.03385.

[11] HILLER, Lejaren Arthur a Leonard M. ISAACSON. Experimental Music; Composition with an Electronic Computer. Westport, CT, USA: Greenwood Publishing Group, 1979, 197 s. ISBN 978-0-313-22158-3.

[12] HOCHREITER, Sepp a Jürgen SCHMIDHUBER. Long Short-Term Memory. Neural Computation [online]. 1997, 9(8), 1735-1780. DOI: 10.1162/neco.1997.9.8.1735. ISSN 0899-7667. Dostupné z: http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735. | DOI 10.1162/neco.1997.9.8.1735

[13] KELLY, Thomas Forrest. Capturing Music: The Story of Notation. W. W. Norton & Company; Har/Com edition, 2014, 256 s. ISBN 978-0393064964.

[14] LOY, Gareth. Musimathics, Volume 1: The Mathematical Foundations of Music. Reprint edition. vyd. Cambridge, Mass.: The MIT Press, 2011. ISBN 978-0-262-51655-6.

[15] REJZEK, Jiří. Český etymologický slovník. Voznice: Leda, 2001. ISBN 80-85927-85-3. Heslo "algoritmus".

[16] RUSSELL, Stuart J. a Peter NORVIG. Artificial intelligence: a modern approach. Third edition. Boston: Pearson, 2016. Prentice Hall series in artificial intelligence. ISBN 9781292153964.

[17] SAINATH, T. N., B. KINGSBURY a B. RAMABHADRAN. Auto-encoder bottleneck features using deep belief networks. 2012. DOI: 10.1109/ICASSP.2012.6288833. | DOI 10.1109/ICASSP.2012.6288833

[18] STURM, Bob L. On folk-rnn cheating and music generation [online]. 2017. Dostupné z: https://highnoongmt.wordpress.com/2017/06/15/on-folk-rnn-cheating-and-music-generation/.

[19] TIU, Ekin. Understanding Latent Space in Machine Learning. In: Medium [online]. 2020. Dostupné z: https://towardsdatascience.com/understanding-latent-space-in-machine-learning-de5a7c687d8d.

[20] TODD, Peter M. A Connectionist Approach to Algorithmic Composition. Computer Music Journal [online]. 1989, 13(4). DOI: 10.2307/3679551. ISSN 01489267. Dostupné z: https://www.jstor.org/stable/3679551?origin=crossref. | DOI 10.2307/3679551

[21] VOLNÁ, Eva. Umělá inteligence: rozpoznávání vzorů v dynamických datech. Praha: BEN – technická literatura, 2014. ISBN 9788073005146.

[22] VONDRÁK, Ivo. Umělá inteligence a neuronové sítě. 2. vyd. Ostrava: Vysoká škola báňská – Technická univerzita, 2000. ISBN 80-7078-949-2.

[23] WALSHAW, Chris. A Statistical Analysis of the ABC Music Notation Corpus: Exploring Duplication. Conference: Folk Music Analysis. Istanbul, 2014. DOI:10.13140/2.1.4340.0961. | DOI 10.13140/2.1.4340.0961